Section 6.3: FACTORING TRINOMIALS WHOSE LEADING COEFFICIENT IS NOT 1

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Factor trinomials by trial and error
- π Factor trinomials by grouping

WARM-UP:

Factor:

$$a. \quad x^2y - xy^2$$

c.
$$2x^3 - 6x^2 + 4x$$

b.
$$x^2 - 14x - 51$$

d.
$$z^2 + z - 72$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING TRIAL AND ERROR

Assume, for the moment, that there is no ______ __________________

factor other than _____.

1. _____ two First _____ whose _____ is ____.

2. _____ two Last _____ whose _____ is ____.

3. By _____ and ____, perform steps 1 and 2 until the ____ of the Outside ____ and the Inside

_____is _____.

If _____ such _____ exist, the polynomial is _____.

Example 1: Factor using trial and error.

a.
$$5x^2 - 14x + 8$$

b.
$$6x^2 + 19x - 7$$

c.
$$3x^2 - 13xy + 4y^2$$

d.
$$9z^2 + 3z + 2$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING GROUPING

- 4. Multiply the leading coefficient and the constant, _____.
- 5. Find the _____ of ____ whose ____ is ____.
- 6. Rewrite the _____ term, ____, as a _____ or a

_____ using the factors from step 2.

7. _____by _____.

Example 1: Factor using grouping.

a
$$3x^2 - x - 10$$

b.
$$8x^2 - 10x + 3$$

c.
$$9y^2 + 5y - 4$$

d.
$$12x^2 + 7xy - 12y^2$$

Example 4: Factor completely

a.
$$4x^2 - 18x - 10$$

c.
$$24y^4 + 10y^3 - 4y^2$$

b.
$$3x^3 + 14x^2 + 8x$$

d.
$$6(y+1)x^2+33(y+1)x+15(y+1)$$